7

Cory 1

SEP 12 1947

RESEARCH MEMORANDUM

FLIGHT INVESTIGATION OF THE HEAT REQUIREMENTS FOR

ICE PREVENTION ON AIRCRAFT WINDSHIELDS

By Kenneth S. Kleinknecht

Flight Propulsion Research Laboratory Cleveland, Ohio

NATIONAL ADVISORY COMMITTEE FOR AERONAUTICS

WASHINGTON

September 5, 1947

N A C A LIBRARY

LANGLEY MEMORIAL AERONAUTICAL
LABORATORY

Leaster Field, Va.

~

ļ

NACA RM No. E7G28

NATIONAL ADVISORY COMMITTEE FOR AERONAUTICS

RESEARCH MEMORANDUM

FLIGHT INVESTIGATION OF THE HEAT REQUIREMENTS FOR

ICE PREVENTION ON AIRCRAFT WINDSHIELDS

By Kenneth S. Kleinknecht

SUMMARY

A flight investigation was conducted to establish the heat requirements for ice prevention on aircraft windshields mounted on the forebody of an airplane at several angles with the thrust axis. Electrically heated windshields were used in this investigation to provide a means of accurately measuring heat input to the windshield. The investigation showed that: (1) by assuming a design condition of an ambient-air temperature of 0°F, a heat input of approximately 1300 Btu per hour per square foot would prevent ice formation at airspeeds up to 220 miles per hour and liquid-water content up to 0.30 gram per cubic meter; (2) as the angle of the windshield with the thrust axis was decreased from 60° to 45°, the heat required for ice prevention remained constant. However, the heat required for ice prevention when the angle was decreased to 30° was about 25 percent less than for angles of 60° and 45°.

INTRODUCTION

One part of the general investigation of the airplane iceprevention program has been concerned with preserving vision through the aircraft windshield during flight in icing conditions. A previous investigation (reference 1) has shown that the use of heat is a practical means of preventing ice formation on the aircraft windshield and has indicated the approximate quantity of heat required for windshield-ice prevention for one type of airplane.

An investigation has been conducted at the NACA Cleveland laboratory in order to establish more adequate data on the quantity of heat required for windshield-ice prevention. The data obtained in this investigation are for windshields mounted on the forebody of an airplane at several angles with the thrust axis. The flight operations were conducted in the Great Lakes region of the United States under conditions of natural icing during the winter of 1946-47.

Special weather forecasting for the icing flights were provided by representatives of the United States Weather Bureau. The windshields used were provided by the Pittsburgh Plate Glass Company.

APPARATUS

A special airplane-forebody section incorporating seven windshield panels each 11 inches square was mounted on a four-engine bomber-type airplane (fig. 1). The windshield panels were installed at the following angles with the thrust axis (fig. 2):

Windshi panel	Angle (deg)		
1, 7	,	45	
2, 3, 5	, 6	30	
Įţ.		60	

Windshield panels 1, 2, and 4 were the laminated type and were electrically heated (fig. 3). The remaining windshields were not heated. A typical windshield installation is shown in figure 3. Electric power was furnished to the test panels by an auxiliary power plant installed in the waist compartment of the airplane.

TRSTRUMENTATION

Temperatures of the outside and inside surfaces of each wind-shield panel were recorded by thermocouples. Three thermocouples were installed on both the outside and inside surfaces of each panel. The thermocouples were located diagonally across the panel, one in the center and one $4\frac{3}{1}$ inches on either side of the center (fig. 3).

The installation of the thermocouples on the outside did not disturb the aerodynamic smoothness of the surface. The inside thermocouples were cemented to the surface with rubber cement. A shielded resistance-bulb thermometer was installed on the bottom of the airplane fuselage to measure ambient-air temperature.

Pressures at altitude and airspeed were measured by flush static orifices and a total-pressure tube located on the side of the airplane at the pilot's station.

The power furnished to the windshields was controlled by the use of wide-range variable transformers in each supply line and was measured by voltmeters and ammeters.

A rotating cylinder assembly, similar to that described in reference 2, was used to determine average droplet size, droplet-size distribution, and liquid-water content. The four cylinders used were $\frac{1}{8}$ inch, $\frac{1}{2}$ inch, $1\frac{1}{4}$ inches, and 3 inches in diameter.

A rotating disk-type icing rate meter was used to measure the icing rate. The principle of operation of this meter is given in reference 2.

RESULTS AND DISCUSSION

The results of this investigation are presented in table I and figure 4.

The quantity of heat provided for the 60° windshield is presumably an indication of the maximum that may be required for any configuration at the conditions experienced during this investigation (fig. 4(c)). The nature of the ice formation on the 60° windshield (fig. 5) indicates that a region of stagnation existed on the windshield. Convective heat transfer and the heat lost to the intercepted water is usually larger in the vicinity of a stagnation pressure region than in other regions of an aerodynamic body.

If a design condition is used that presumes a temperature rise of the windshield surface of 32° F above a 0° F ambient-air temperature, the conclusion may be made from the data in figure 4(c) that approximately 1300 Btu per hour per square foot will prevent ice formation at velocities up to 220 miles per hour and liquid-water content as large as 0.30 gram per cubic meter. Because of the high collection of liquid water, which was apparent on the 60° windshield, it is possible that the provision of 1300 Btu per hour per square foot will provide protection for the full range of water-droplet sizes that may be encountered under the conditions noted.

From data on the temperature rise of the various windshield surfaces, it has been ascertained that as the angle of the windshield with the thrust axis is decreased from 60° to 45°, the heat required remains constant. However, when the anglé is decreased to 30°, about 25 percent less heat is required.

The ranges in airplane velocity and intensity of icing conditions were inadequate to permit a general statement of the relation between heat required for ice prevention and the operating conditions.

Observations made during the conduction of this research indicated that the use of electrically heated panels did not provide any protection for the windshield frame (fig. 6), whereas the airheated airplane service installation (fig. 7) did provide frame protection. The center windshield of the airplane service installation was not heated.

Flight Propulsion Research Laboratory, National Advisory Committee for Aeronautics, Cleveland, Ohio.

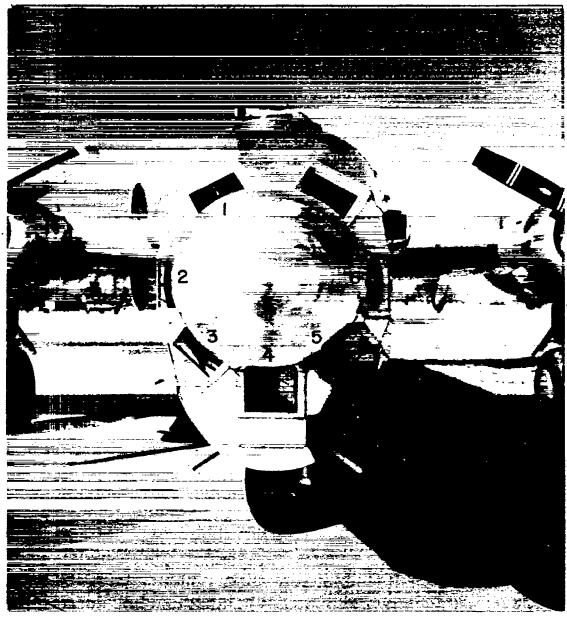
REFERENCES

- 1. Rodert, Lewis A., Clousing, Lawrence A., and McAvoy, William H.: Recent Flight Research on Ice Prevention, NACA ARR, Jan. 1942.
- Vonnegut, B., Cunningham, R. M., and Katz, R. E.: Instruments
 for Measuring Atmospheric Factors Related to Ice Formation on
 Airplanes. Dept. Meteorology, De-Icing Res. Lab., M.I.T.,
 April 1946. (Available from Office of Technical Services,
 U.S. Department of Commerce, as PB No. 48074,)

TABLE I

RESULTS OF FLIGHT INVESTIGATION TO DETERMINE THE TEMPERATURE RISE OF THE OUTSIDE SUBPACE
OF WINDSHIELDS ABOVE ANBIENT-AIR TEMPERATURE IN MATURAL ICINO CONDITIONS

NATIONAL ADVISORY
COMMITTEE FOR AERONAUTICS


Compartment	Angle	Altitude	Velocity	Ambient-	Windshield-	Average	windshield	Heat innet			Liquid-	Rate
\$50 \$34 \$25 \$46 \$46 \$350 \$177 \$15 \$25 \$45 \$44 \$47 \$588 \$4.6 \$4.0 \$2.0 \$4.6 \$4.0 \$4.	deg)	(ft)		air tom-	compartment temperature	temperat Inside	ure (°F)] (Btu/(hr)	droplet	81ze distri-	water	of ioing
460 444 27 558 6.5 A 0.280 1.6 60 37 558 6.5 A 0.280 1.6 60 37 558 6.5 A 0.280 1.6 60 351 809 6.5 A 0.280 1.6 45 351 809 9.1 A 0.185 60 80 1293 9.1 A 0.185 60 1282 8.7 A 0.205 60 1282 8.7 A 0.205 60 1282 8.7 A 0.205 80 51 1410 </td <td>45</td> <td>3310</td> <td>177</td> <td>1.3</td> <td>25</td> <td>34 30</td> <td>26 35 21</td> <td>408</td> <td>8.7</td> <td>4</td> <td>0.365</td> <td>2.64</td>	45	3310	177	1.3	25	34 30	26 35 21	408	8.7	4	0.365	2.64
60 54 51 809 9.1 A 0.185	45	3210	177	16	25	4.0	36 30 27	780 693	8.6	A	0,240	2.54
45 351.0 177 14 24 78 45 1268 9.1 A 0.185 45 351.0 177 15 24 79 45 1328 8.7 A 0.305 50 321.0 157 16 23 49 31 493 6.5 A 0.275 45 60 20 152 36 55 90 54 85 976 6.5 A 0.275 60 22 1338 11.0 E 0.202 1. 60 1.0 4 E 0.195 1. 60 1. 60 1.0 4 1.0 1.0 1.0 1.0 1.0 <td< td=""><td>45 60</td><td>3510</td><td>180</td><td>1,5</td><td>24</td><td>54 _</td><td>51</td><td>809</td><td>8.5</td><td>A</td><td>0.260</td><td>1.68</td></td<>	45 60	3510	180	1,5	24	54 _	51	809	8.5	A	0.260	1.68
30 3210 157 16 23 49 31 38 976 6.5 A 0.275 60 60 163 28 35 90 58 869 11.0 B 0.202 1. 50 2820 158 36 34 76 51 616 10.4 B 0.195 1. 45 50 350 55 55 976 51 616 10.4 B 0.195 1. 50 350 350 350 35 56 40 413 0. 45 60 70 46 813 10.0 E 0.805 1. 50 3985 155 24 32 43 35 430 10.0 E 0.805 1. 45 60 5985 155 24 32 43 33 274 7.9 E	45	351.0	177	14		78 58	45 58	1528 1095	9.1	A	0.183	
30 3210 157 16 23 49 31 38 976 6.5 A 0.275 60 30 2820 152 26 35 90 56 869 11.0 B 0.202 1. 60 30 3820 158 36 34 76 51 616 10.4 B 0.195 1. 50 350 158 36 35 55 976 10.77 0.195 1. 60 350 3506 158 36 35 56 40 413 0.195 1. 45 60 70 46 813 10.77 0.40 1.	45 60	351 0	177	15	84	79 87	45 52	1328 1419	8,7	A	0.305	
50 2820 152 96 55 90 58 859 11.0 8 0.202 1.6 60 1328 99 62 1328 11.0 8 0.202 1.6 60 1328 1328 11.0 8 0.202 1.6 60 1328 1328 11.0 8 0.202 1.6 60 1328 1328 11.0 8 0.202 1.6 60 10.0 8 0.1077 1.6 616 10.4 8 0.1077 1.0 1	50 45	3210	157	1.6	23	89 _	31 38 51	493 976 1410	8.5	A	0.275	
50 2820 158 26 54 76 51 616 10.4 E 0.195 1.6 60 86 55 976 1077 20.195 1.6 20.195 1.6 20.195 1.6 20.195 1.6 20.195 1.6 20.195 1.6 20.195 1.6 20.195 1.6 20.195 1.6 20.195 1.6 20.195 1.6 20.195 1.6 20.195 1.6 20.195	45	2920	153	26	35	95 99	58 6 2	1329	11.0	B	0.202	1.13
45 60 60 70 44 956 60 62 44 956 60 60 813 60 82 239 10.0 8 0.805 1. 60 80 10.0 8 0.805 1. 60 8 0.805 1. 60 8 65 45 65 45 65 45 65 45 65 40 35 274 46 35 324 60 60 65 40	30 45	2820	158	26	34	88	55	i 976 i	10.4	E	0.195	1.51
30 5965 165 24 52 45 52 239 10.0 E 0.805 1. 60 59 42 566 566 566 566 566 566 566 566 566 566 566 566 566 566 6.	45	3505	156	25		56 62 70	44 46	413 988 813		44464	******	0.56
30 3405 162 25 31 36 31 119 7.9 E 0.350 0.6 46 35 274 280 19 38 78 60 787 18.1 E 0.300 45 60 41 676 66 41 795 18.1 E 0.300 45 60 41 795 18.0 E 0.240 45 51 44 445 558 558 558 17.7 E	45	3985	165	24	52	45 57 59	32 35	450	10.0	B	0.805	1.62
45 66	30 45	3405	162	25	27	· 40	51, 53 56	274	7.9	E	0.4550	0.58
30 9710 225 19 35 60 40 495 18.0 E 0.240 45 60 51 44 444 444 <t< td=""><td>30 45</td><td>9910</td><td>220</td><td>19</td><td>38</td><td>65</td><td>41</td><td>787 676</td><td>10.1</td><td>E</td><td>0.300</td><td>#W=4</td></t<>	30 45	9910	220	19	38	65	41	787 676	10.1	E	0.300	#W=4
50 9910 214 20 35 47 32 276 17.7 E 0.170 45 60 48 35 357 50 9910 191 20 35 76 51 776 18.0 E 0.120 46 63 45 676 60 62 46 1005	50 45	9710	225	19	35	60 51	40 44	495 444	18.0	E	0.240	4400
50 9910 191 20 35 76 51 775 18.0 E 0.120	50 45	9910	214	20	35	47 42	32 30	276 250	17.7	E		
60 5580 178 20 38 61 39 617 15.0 A 0.340 2. 60 5375 161 21 82 48 30 498 13.0 A 0.147 2.	50 45	9910	191	50	35	76 63 63	51 43	775 676	18.0	E	0.120	
60 5375 181 21 52 48 30 498 13.0 A 0.147 2.0	60	5580	178	20	36	61	39	817	15.0	A	0.340	2.5
60 5480 183 21 51 79 50 1189 14.0 A 0.190 0.		5375	181	2 <u>1</u>	52 51	48	50	1189	13.0	_ <u>^</u>	0.147	2.0

Distributions A and E are described in reference 2, pp. 4-12.

NACA C- 18122 3-11-47

Figure 1. - Airplane with special windshield section mounted on forebody to determine heat required to prevent ice formation on aircraft windshields.

NACA C- 18123

(a) Front view.

Figure 2. - General arrangement of windshield panels for determining heat required to prevent ice formation on aircraft windshields.

NACA C- 18 124 3- 1 1- 47

(b) Side view.

Figure 2. - Concluded. General arrangement of windshield panels for determining heat required to prevent ice formation on aircraft windshields.

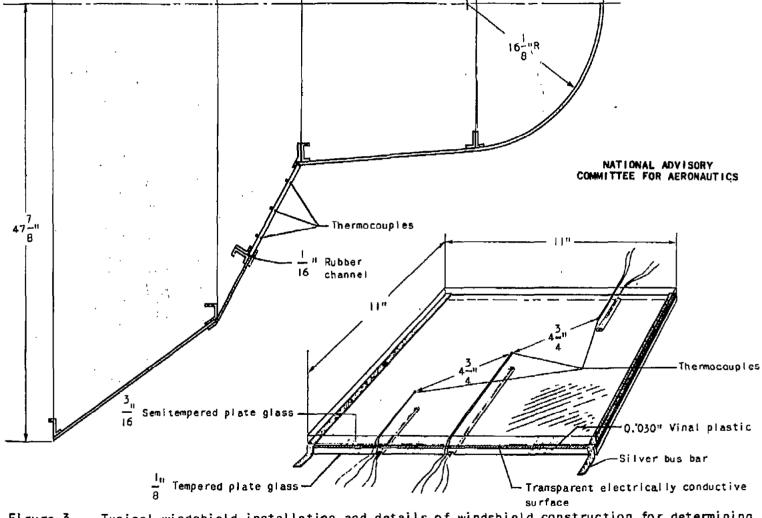
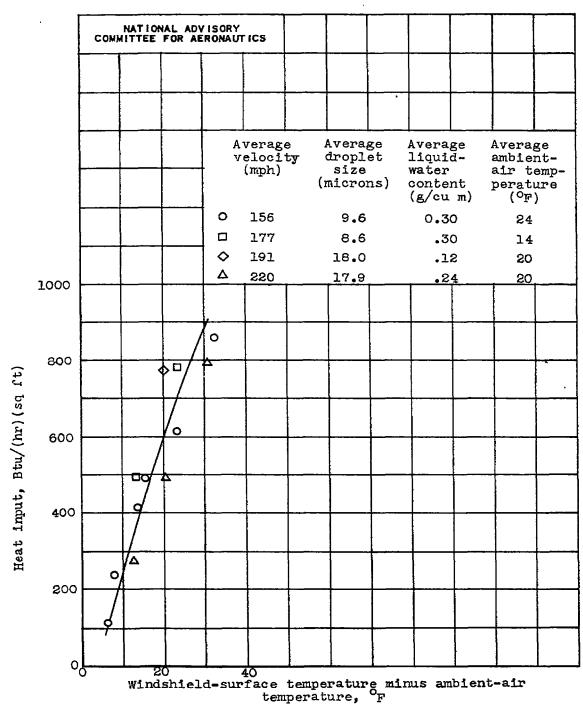
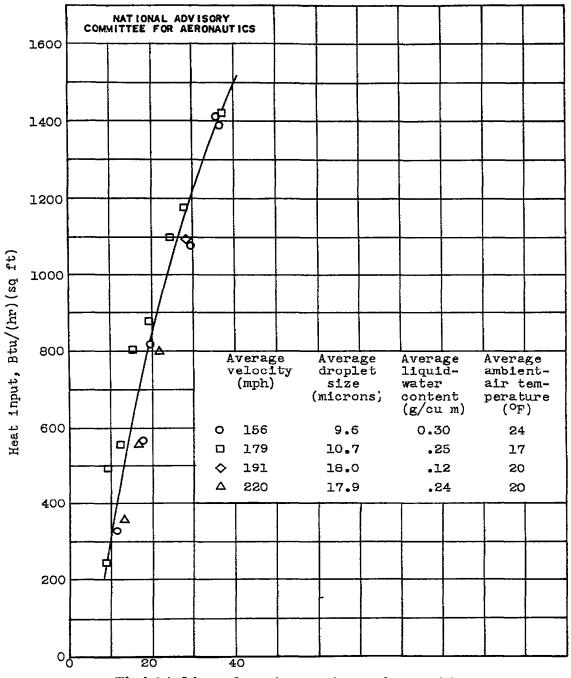



Figure 3. - Typical windshield installation and details of windshield construction for determining heat required to prevent ice formation on aircraft windshields.



(a) Windshield angle with thrust axis, 30°.

Figure 4. - Variation of heat input with temperature rise of outside surface of windshield above ambient-air temperature.

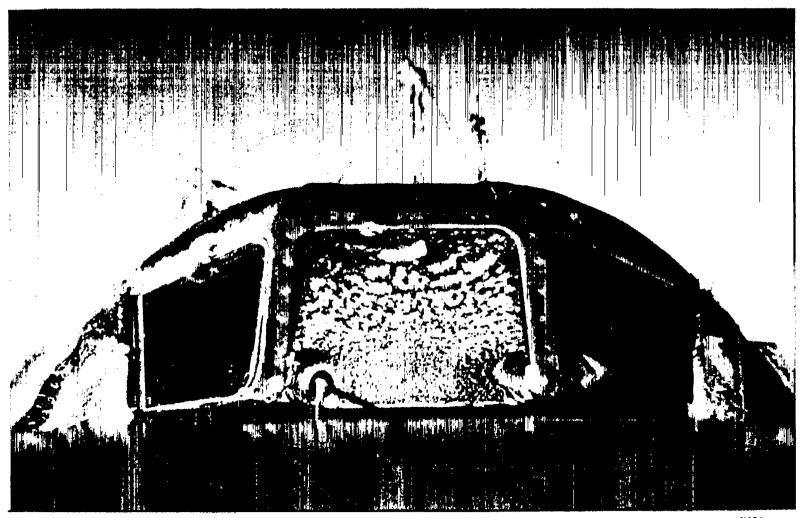
(b) Windshield angle with thrust axis, 45°.

Figure 4. - Continued. Variation of heat input with temperature rise of outside surface of windshield above ambient-air temperature.

Windshield-surface temperature minus ambient-air temperature, $^{\rm OF}$

(c) Windshield angle with thrust axis, 60°.

Figure 4. - Concluded. Variation of heat input with temperature rise of outside surface of windshield above ambient-air temperature.


805

NACA C- 18069 3- 6- 47

Figure 5. - Ice formation on 60° windshield panel after flight with no heat applied.

Figure 6. - Ice accretion on framework of 60° windshield during electrical thermal anti-icing of windshield.

NACA C- 18067 3 - 6- 47

Figure 7. - Airplane service windshields in natural icing condition. Thermal hot-air anti-icing on pilot's and copilot's windshields; center windshield not anti-iced.

3 1176 01425 9650

¥.,